Ingredients for soil fertility in vegetable production

Richard de Visser
HortiAdvice Scandinavia A/S

1. Organic matter management
2. Green manure strategy
3. Controlled traffic farming in vegetable production

Change in soil carbon content

Based on results from Kvadratnettet 1986 - 2009

Law of the minimum

Soil organic matter

Significance for physical properties
- Building soil structure and glue for aggregates
- Stores and discharges water – increases ability for soil water retention
- Influence on aeration and temperature

Significance for chemical properties
- Retaining an supplying nutrients
- Cation exchange-capacity
- Acts as pH buffer
- Availability og micronutrients
- Filtration

Significance for biological properties
- Energy for micro-organisms and larger OM consuming organisms
- Mineralization of organically fixed N, P, S
- Root development
- Stimulates microbiological activity and increases soil resilience
Soil organic matter properties on soil type

- Heavy soils
 - Improve water and air management
 - Increase tillage opportunities
- Loamy soils
 - Improve water and air management
 - Less vulnerable for (surface) erosion
- Sandy soils
 - Reduce Drought sensitiveness
 - Increases plant available water
 - Higher nutrient retention
 - Higher resistance to wind

Effective Organic Matter (EOM)

Is the organic matter from manure, compost, crop residues and green manures, which remains one year after application

- Crop residues and catch crops 10-30%
- Slurry and manure 30-70%
- Compost 60-90%

Organic Matter Balance

2-3% OM breaks down yearly

Danish top 25 cm soil contains 110 tons OM/ha
(kvadratnetsundersøgelser)

Which means 2,2 – 3,3 tons OM/ha disappears every year

To maintain OM-level it will need 2.2 tons EOM/år in crop residues, organic amendments, cover crops

...which can be outlined on a crop rotation level or pr.year

Efektiv Organisk Stof (EOM)

Example EOM crop, kg/ha EOM organic fertilizer kg/ha Total
Summer barley/undersown clovergrass, straw left in the field 1310+850+630 280 3070
Potato 875 420 1295
Carrot 700 420 1120
Pea/oil radish 170+850 0 1020
Oats/undersown red clover/straw left in the field 1570+850+900 210 3530
Average EOM pr.year 2007

Afgrøderst er	kg EOS/ha	Efterafgrøder/gødning	kg EOS/ha
Broccoli	640	Oil radish	875
Leg	300	Red clover, undersown	1165
Gulerod	100 - 700	Grass, 1 year	1200
Kartoffel, konsum	875	Grass, 3 year	
Pøerre	100 - 450	Lucerne, 2, år	2050
Græskar	250	Sow slurry (pr.tons)	9
Hovedsalat	160	Cattle slurry (pr.tons)	50
Havre	1570	Deep litter (pr.tons)	109
Havrehalm	900	Champost (pr.tons)	106
	Compost (pr.tons)	182	
Maintaining OM in top soil

<table>
<thead>
<tr>
<th>O.M. decomposition</th>
<th>Soil Organic Matter</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
<th>4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>375</td>
<td>750</td>
<td>1125</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>2%</td>
<td>750</td>
<td>1500</td>
<td>2250</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>1125</td>
<td>2250</td>
<td>3375</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>1500</td>
<td>3000</td>
<td>4500</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>1875</td>
<td>3750</td>
<td>5625</td>
<td>7500</td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>2250</td>
<td>4500</td>
<td>6750</td>
<td>9000</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of effective organic matter input

STANDARD
- Conventional
- Mineral concentrate & mineral fertilizer
- Pig & cow slurry & mineral fertilizer
- Farm yard manure & cow slurry

HIGH
- 3000 kg EOM/ha/jr

LOW
- 1000 kg EOM/ha/jr

Crop rotation Vredepeel

Sandy soil, 3.5 - 4% OM

Nutriënten Waterproof 2005/8-11 zand PPO-WUR

Organic matter content of the soil

- No trend on the short term
- Net input small compared to soil stock
- Relatively large error of measurement

Nutriënten Waterproof 2005/8-11 zand PPO-WUR

Trends in crop yield 2001-2013

Index crop yields averaged over all years

- Standard
- Low
- High +20%

EOM input crop residues

- EOM input differs per crop
 - Aim ½ of total EOM-input

Potato, Pea, Leek, Sugar beet, Maize, Average
Increasing input of Effective Organic Matter gives
• Increasing Yields
• Decreasing nitrogen leaching fraction on the long term
• Better and more stable soil quality

Animal manure
• Deep litter > cattle slurry > pig slurry > sow slurry
Choice of crop and crop rotation
• Cereals are low-cash-crop, but positive in EOM-supply
• Leave straw
• Ley or alfalfa
Green manure
• Dependant on species
• Be aware of nematodes
Compost
• Stable organic material

Composted household waste?
• Garden waste – 800,000 tons
• Sewage – 650,000 tons
• Straw – 6 mio tons
• Pig slurry – 6.400 mio tons
• Cattle slurry – 9.000 mio tons